216 research outputs found

    Samsoeum, a traditional herbal medicine, elicits apoptotic and autophagic cell death by inhibiting Akt/mTOR and activating the JNK pathway in cancer cells

    Get PDF
    BACKGROUND: Samsoeum (SSE), a traditional herbal formula, has been widely used to treat cough, fever, congestion, and emesis for centuries. Recent studies have demonstrated that SSE retains potent pharmacological efficiency in anti-allergic and anti-inflammatory reactions. However, the anti-cancer activity of SSE and its underlying mechanisms have not been studied. Thus, the present study was designed to determine the effect of SSE on cell death and elucidate its detailed mechanism. METHODS: Following SSE treatment, cell growth and cell death were measured using an MTT assay and trypan blue exclusion assay, respectively. Cell cycle arrest and YO-PRO-1 uptake were assayed using flow cytometry, and LC3 redistribution was observed using confocal microscope. The mechanisms of anti-cancer effect of SSE were investigated through western blot analysis. RESULTS: We initially found that SSE caused dose- and time-dependent cell death in cancer cells but not in normal primary hepatocytes. In addition, during early SSE treatment (6–12 h), cells were arrested in G(2)/M phase concomitant with up-regulation of p21 and p27 and down-regulation of cyclin D1 and cyclin B1, followed by an increase in apoptotic YO-PRO-1 (+) cells. SSE also induced autophagy via up-regulation of Beclin-1 expression, conversion of microtubule-associated protein light chain 3 (LC3) I to LC3-II, and re-distribution of LC3, indicating autophagosome formation. Moreover, the level of B-cell lymphoma 2 (Bcl-2), which is critical for cross-talk between apoptosis and autophagy, was significantly reduced in SSE-treated cells. Phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) was increased, followed by suppression of the protein kinase B/mammalian target of rapamycin (Akt/mTOR) pathway, and phosphorylation of mitogen-activated protein kinases (MAPKs) in response to SSE treatment. In particular, among MAPKs inhibitors, only the c-Jun N-terminal kinase (JNK)-specific inhibitor SP600125 nearly blocked SSE-induced increases in Beclin-1, LC3-II, and Bax expression and decreases in Bcl-2 expression, indicating that JNK activation plays critical role in cell death caused by SSE. CONCLUSIONS: These findings suggest that SSE efficiently induces cancer cell death via apoptosis as well as autophagy through modification of the Akt/mTOR and JNK signaling pathways. SSE may be as a potent traditional herbal medicine for treating malignancies

    Oyaksungisan, a Traditional Herbal Formula, Inhibits Cell Proliferation by Induction of Autophagy via

    Get PDF
    Oyaksungisan (OY) is a traditional herbal formula broadly used to treat beriberi, vomiting, diarrhea, and circulatory disturbance in Asian countries from ancient times. The effect of OY on cancer, however, was not reported until now. In this study, we have demonstrated that OY inhibits cell proliferation and induces cell death via modulating the autophagy on human colon cancer cells. In HCT116 cells, OY increased the ratio of LC3-II/LC3-I, a marker of autophagy, and treatment with 3-MA, an inhibitor of autophagy, and considerably reduced the formation of autophagosomes. In addition, OY regulated mitogen-activated protein kinase (MAPK) cascades; especially, JNK activation was closely related with autophagy effect by OY in HCT116 cells. Our results indicate that autophagy induction is responsible for the antiproliferative effect by OY, despite the weak apoptosis induction in HCT116 cells. In conclusion, OY might have a potential to be developed as an herbal anticancer remedy

    HRT, Herbal Formula, Induces G 2

    Get PDF
    We have demonstrated the anticancer effect of HRT in HCT116, human colon carcinoma cells. HRT inhibited cancer cell growth by causing cell cycle arrest at G2/M and inducing apoptosis as evidenced by DNA fragmentation assay. We found that HRT induces the activation of caspase-3, -8, and -9, whereas it reduces the level of Bcl-2 protein and results in the cleavage of PARP. Further, HRT decreased the level of phosphorylation of Akt and its downstream signals such as mTOR and GSK-3β. These results indicate that HRT stimulates the apoptotic signaling pathway and represses the survival and proliferation of colon cancer cells via inhibiting Akt activity. Hence, our results suggest that HRT has a potential to be developed as a therapeutic agent against colon cancer cells

    Antiasthmatic Effects of Herbal Complex MA and Its Fermented Product MA128

    Get PDF
    This study was conducted to determine if oral administration of the novel herbal medicine, MA, and its Lactobacillus acidophilus fermented product, MA128, have therapeutic properties for the treatment of asthma. Asthma was induced in BALB/c mice by systemic sensitization to ovalbumin (OVA) followed by intratracheal, intraperitoneal, and aerosol allergen challenges. MA and MA128 were orally administered 6 times a week for 4 weeks. At 1 day after the last ovalbumin exposure, airway hyperresponsiveness was assessed and samples of bronchoalveolar lavage fluid, lung cells, and serum were collected for further analysis. We investigated the effect of MA and MA128 on airway hyperresponsiveness, pulmonary eosinophilic infiltration, various immune cell phenotypes, Th2 cytokine production, OVA-specific IgE production, and Th1/Th2 cytokine production in this mouse model of asthma. In BALB/c mice, we found that MA and MA128 treatment suppressed eosinophil infiltration into airways and blood, allergic airway inflammation and AHR by suppressing the production of IL-5, IL-13, IL-17, Eotaxin, and OVA-specific IgE, by upregulating the production of OVA-specific Th1 cytokine (IFN-γ), and by downregulating OVA-specific Th2 cytokine (IL-4) in the culture supernatant of spleen cells. The effectiveness of MA was increased by fermentation with Lactobacillus acidophilus

    Screening of aqueous extracts of medicinal herbs for antimicrobial activity against oral bacteria

    Get PDF
    AbstractBackgroundDental caries is considered to be a preventable disease, and various antimicrobial agents have been developed for the prevention of dental diseases; however, many bacteria show resistance to existing agents. In this study, 14 medicinal herbs were evaluated for antimicrobial activity against five common oral bacteria as a screen for potential candidates for the development of natural antibiotics.MethodsAqueous extracts of medicinal herbs were tested for activity against Enterococcus faecalis, Actinomyces viscosus, Streptococcus salivarius, Streptococcus mutans, and Streptococcus sanguis grown in brain heart infusion (BHI) broth. A broth microdilution assay was used to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). A disk diffusion assay was performed by inoculating bacterial cultures on BHI agar plates with paper disks soaked in each of the medicinal herb extracts. Inhibition of the synthesis of water-insoluble glucans by S. mutans was also investigated.ResultsThe aqueous extracts of many of the 14 medicinal herbs demonstrated antimicrobial activity against the five types of pathogenic oral bacteria. The extracts of Sappan Lignum, Coptidis Rhizoma, and Psoraleae Semen effectively inhibited the growth of oral bacteria and showed distinct bactericidal activity. The extracts of Notoginseng Radix, Perillae Herba, and Psoraleae Semen decreased the synthesis of water-insoluble glucans by the S. mutans enzyme glucosyltransferase (GTase). The present study is the first to confirm the antimicrobial activity of the extract of Sappan Lignum against all five species of oral bacteria strains.ConclusionThese results suggest that certain herbal medicines with proven antimicrobial effects, such as Sappan Lignum and Psoraleae Semen, may be useful for the treatment of dental diseases

    Effectiveness of the Novel Herbal Medicine, KIOM-MA, and Its Bioconversion Product, KIOM-MA128, on the Treatment of Atopic Dermatitis

    Get PDF
    This study was conducted to determine if oral administration of the novel herbal medicine, KIOM-MA, and its Lactobacillus acidophilus-fermented product, KIOM-MA128, has therapeutic properties for the treatment of atopic dermatitis (AD). Using AD-induced BALB/c mice by Ovalbumin and aluminum hydroxide, the effectiveness of KIOM-MA and KIOM-MA128 on AD was evaluated. Oral administration of KIOM-MA and KIOM-MA128 reduced major clinical signs of AD including erythema/darkening, edema/papulation, excoriations, lichenification/prurigo, and dryness. Interestingly, KIOM-MA128 more significantly improved AD-related symptoms including decrease of IgE level in the plasma as well as reduction of scratching behavior, skin severity in the AD BALB/c model. HPLC analysis showed the significant changes in the constituent patterns between KIOM-MA and KIOM-MA128. Our results suggest that both KIOM-MA and KIOM-MA128 have potential for therapeutic reagent for the treatment of AD, and further, the efficacy is significantly enhanced by L. acidophilus fermentation via increases in its indicator molecule

    Effects of Berberine and Hwangryunhaedok-Tang on Oral Bioavailability and Pharmacokinetics of Ciprofloxacin in Rats

    Get PDF
    Hwangryunhaedok-Tang (HR) and berberine-containing single herbs are used to treat bacterial infection and inflammatory diseases in eastern Asia. The combination of berberine-containing herbal medicines and ciprofloxacin can be an excellent antibacterial chemotherapy against multidrug resistance bacteria. To evaluate the pretreatment effect of berberine and HR, vehicle, berberine (25 and 50 mg/kg/day), and HR (1.4 g/kg/day) were daily administered to rats for five consecutive days. On day 6, ciprofloxacin was administered (10 mg/kg, i.v. and 20 mg/kg, p.o.) to rats. To assess cotreatment effect of berberine and ciprofloxacin, berberine (50 mg/kg) and ciprofloxacin (20 mg/kg) were coadministered by single oral gavage. Pharmacokinetic data were estimated by noncompartmental model. Compared with ciprofloxacin alone (control group), coadministration of berberine (50 mg/kg) and ciprofloxacin significantly decreased Cmax of ciprofloxacin (P<0.05). In addition, the pretreatment of berberine (50 mg/kg/day) and HR (1.4 g/kg/day) significantly decreased Cmax and AUC0→∞, compared with control group (P<0.05). The oral bioavailability of ciprofloxacin was reduced by cotreatment of berberine and pretreatment of berberine and HR. Our results suggest that the expression of P-glycoprotein and organic anion and/or organic cation transporters (OAT/OCT) could take a role in reduced oral bioavailability of ciprofloxacin by berberine and HR
    corecore